Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 354: 141714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521106

RESUMO

The widespread use of nanomaterials has raised the threat of nanoparticles (NPs) infection of soils and groundwater resources. This research aims to investigate three parameters including flow velocity, ionic strength (IS), and initial particle concentration effects on transport behavior and retention mechanism of functionalization form of graphene oxide with polyvinylpyrrolidone (GO-PVP). The transport of GO-PVP was investigated in a laboratory-scale study through saturated/unsaturated (Saturation Degree = 0.91) sand columns. Experiments were conducted on flow velocity from 1.20 to 2.04 cm min-1, initial particle concentration from 10 to 50 mg L-1, and IS of 5-20 mM. The retention of GO-PVP was best described using the one-site kinetic attachment model in HYDRUS-1D, which accounted for the time and depth-dependent retention. According to breakthrough curves (BTCs), the lower transport related to the rate of mass recovery of GO-PVP was obtained by decreasing flow velocity and initial particle concentration and increasing IS through the sand columns. Increasing IS could improve the GO-PVP retention (based on katt and Smax) in saturated/unsaturated media; katt increases from 2.81 × 10-3 to 3.54 × 10-3 s-1 and Smax increases from 0.37 to 0.42 mg g-1 in saturated/unsaturated conditions, respectively. Our findings showed that the increasing retention of GO-PVP through the sand column under unsaturated condition could be recommended for the reduction of nanoparticles danger of ecosystem exposure.


Assuntos
Grafite , Nanopartículas , Areia , Porosidade , Ecossistema , Concentração Osmolar , Dióxido de Silício
2.
Environ Monit Assess ; 195(1): 203, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36526950

RESUMO

Demarcation of the potential zones for groundwater artificial recharge (GAR) based on the most influential factors is an urgent need for retardation of saltwater intrusion and, thus, sustainability of groundwater resources in the arid zones. This study developed an overlay-index methodology to delineate favorable GAR zones by a linear combination of 11 influential thematic layers in ArcGIS. The proposed methodology was implemented on two coastal aquifer settings Sharif-Abad (SAA) and Qom-Kahak (QKA) aquifers adjacent to Salt Lake, Central Iran. Results indicated that 16.41% of the surface of SAA and 28.58% of QKA were identified as the high potential zone for GAR mainly located in low GW vulnerability parts. Based on the analysis of the area under the receptive operating curve (AUC), the produced GAR map has an accuracy of 0.643, and 0.611 for SAA and QKA aquifers, respectively, which relies on the acceptable limit. Finally, the quantity of water required for GAR to control the intrusion of seawater at the suitable parts of these aquifers was estimated as 25 MCM and 35 MCM, annually. The methodology adopted in this study can serve as a holistic assessment for the detection of SWI in coastal aquifers, and also a comprehensive blueprint for managers to delineate the favorable GAR zones, especially in arid regions.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Irã (Geográfico) , Água Subterrânea/análise , Água do Mar/análise , Lagos
3.
J Environ Manage ; 317: 115492, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751286

RESUMO

Digital Elevation Models (DEMs) play a significant role in hydraulic modeling and flood risk management. This study initially investigated the effect of Unmanned Aerial Vehicle (UAV) DEM resolutions, ranging from 1 m to 30 m, on flood characteristics, including the inundation area, mean flow depth, and mean flow velocity. Then, the errors of flood characteristics for global DEMs, comprising ALOS (30 m), ASTER (30 m), SRTM (30 m), and TDX (12 m) were quantified using UAV DEM measurements. For these purposes, the HEC-RAS 2D model in steady-state conditions was used to simulate the flood with return periods of 5- to 200 years along 20 km reach of Atrak River located in northeastern Iran. Results indicated when UAV DEM resolution decreased from 1 m to 30 m, inundation area and mean flow depth increased 17.0% (R2 = 0.94) and 10.2% (R2 = 0.96) respectively, while mean flow velocity decreased 16.8% (R2 = -0.94). Validation of the hydraulic modeling using the modified normalized difference water index demonstrated that the HEC-RAS 2D model in conjunction with UAV DEM simulates the flood with ⁓92% accuracy. Comparing the global DEMs with UAV DEM showed that the root mean square error (RMSE) values of the flow depth for ASTER, SRTM, ALOS, and TDX DEMs were 1.77, 1.12, 1.02, and 0.93 m, and the RMSE values of the flow velocity for the same DEMs were 0.81, 0.66, 0.55, and 0.47 m/s, respectively. Furthermore, TDX DEM with a 6.15% error in the inundation area was the nearest to UAV measurements. Overall, TDX DEM revealed a better performance in hydraulic modeling of the fluvial flood characteristics. Hence, it is recommended for environments where high-resolution topography data is scarce. The results of this study could potentially serve as a guideline for selecting global DEMs for hydraulic simulations.

5.
Sci Total Environ ; 778: 146193, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33725610

RESUMO

This study presents a comprehensive review of the Land subsidence (LS) cases, as a worldwide environmental, geological, and global geohazard concern. Here, 290 case studies around the world mostly conducted in large metropolitan cities (e.g. Bangkok, Beijing, California, Houston, Mexico City, Shanghai, Jakarta, and Tokyo) in 41 countries were collected. The spatial distribution of LS characteristics (e.g. intensity, magnitude, and affected area), impacts, and influential factors are scrutinized. Worldwide attempts to remedy the crisis of LS were also investigated in this review. It is shown that the coastal plains and river deltaic regions are of high-frequent subsided areas around the world (~47% of 290 study areas). The spaceborne monitoring of LS is the more prevalent technique (~ 38% of total cases) compared to the ground-investigation (e.g. geological surveying, leveling, GPS, and modeling). Human-induced LS cases are 76.92% of all the LS cases around the world and groundwater extraction contributes 59.75% of these cases. Strong direct correlations with the exponential trend are observed between the average LS rate (LSavg) with groundwater withdrawal (R2 = 0.950) and groundwater level decline (R2 = 0.888). To understand the influential factors on LS occurrences, the relationship of LS rate with climate factors, hydrogeological characteristics of the aquifer, human-induced factors are investigated. Finally, we provide future research guidelines and implications that need to be expanded in order to better monitor and reduce the impact of the LS phenomenon. The outcomes of this study can be used to derive a framework helpful for interpreting the observed LS phenomena and for forecasting future situations to mitigate or control this geohazard.

6.
Sci Rep ; 10(1): 17473, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060803

RESUMO

The estimation of long-term groundwater recharge rate ([Formula: see text]) is a pre-requisite for efficient management of groundwater resources, especially for arid and semi-arid regions. Precise estimation of [Formula: see text] is probably the most difficult factor of all measurements in the evaluation of GW resources, particularly in semi-arid regions in which the recharge rate is typically small and/or regions with scarce hydrogeological data. The main objective of this study is to find and assess the predicting factors of [Formula: see text] at an aquifer scale. For this purpose, 325 Iran's phreatic aquifers (61% of Iran's aquifers) were selected based on the data availability and the effect of eight predicting factors were assessed on [Formula: see text] estimation. The predicting factors considered include Normalized Difference Vegetation Index (NDVI), mean annual temperature ([Formula: see text]), the ratio of precipitation to potential evapotranspiration ([Formula: see text]), drainage density ([Formula: see text]), mean annual specific discharge ([Formula: see text]), Mean Slope ([Formula: see text]), Soil Moisture ([Formula: see text]), and population density ([Formula: see text]). The local and global Moran's I index, geographically weighted regression (GWR), and two-step cluster analysis served to support the spatial analysis of the results. The eight predicting factors considered are positively correlated to [Formula: see text] and the NDVI has the greatest influence followed by the [Formula: see text] and [Formula: see text]. In the regression model, NDVI solely explained 71% of the variation in [Formula: see text], while other drivers have only a minor modification (3.6%). The results of this study provide new insight into the complex interrelationship between [Formula: see text] and vegetation density indicated by the NDVI. The findings of this study can help in better estimation of [Formula: see text] especially for the phreatic aquifers that the hydrogeological ground-data requisite for establishing models are scarce.

7.
Sci Total Environ ; 729: 138822, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32498164

RESUMO

Lake Urmia (LU) is the second largest hypersaline lake in the world. Lake Urmia's water level has dropped drastically from 1277.85 m to 1270.08 m a.s.l (equal to 7.77 m) during the last 20 years, equivalent to a loss of 70% of the lake area. The likelihood of lake-groundwater connection on the basin-scale is uncertain and understudied because of lack of basic data and precise information required for physically-based modeling. In this study, cross-correlation analysis is applied on a various time-frames of water level of the lake and groundwater levels (2001-2018) recorded in 797 observation wells across 17 adjacent aquifers. This provides insightful information on the lake-groundwater interaction. The cross-correlation coefficient between the monthly water level of lake and observations wells (rGW-L) and the difference of these two variables (Hf) was calculated for different time-frames. The values of rGW-L (ranged -0.69 to 0.97) and Hf (ranged -53 m to 293 m) indicated the significant role of time-frames of observed dataset on dynamic behavior of lake-groundwater interaction, and exchange fluxes in the study setting. Results suggested two opposing behaviors in lake-groundwater interaction of the study system mainly arise from anthropogenic activity (overexploitation of groundwater for irrigation) and aquifer type (unconfined/pressurized): three out of 17 adjacent aquifers are feeding by the LU and act as "gaining aquifers" (located in northern half of LU) and others discharging into the LU and act as "losing aquifers". This study aimed to provide easy-to-obtain insights into LGWI in the complex setting of LU Basin. It can be considered a preliminary step towards a deeper understanding of the interaction through physically-based analysis and modeling.

8.
Sci Total Environ ; 698: 134224, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493572

RESUMO

This study focuses on the transport in porous media of graphene oxide nanoparticles (GONP) under conditions similar to those applied in the generation of in-situ reactive zones for groundwater remediation (i.e. GO concentration of few tens of mg/l, stable suspension in alkaline solution). The experimental tests evaluated the influence on GO transport of three key factors, namely particle size (300-1200 nm), concentration (10-50 mg/L), and sand size (coarse to fine). Three sources of GONP were considered (two commercial and one synthesized in the laboratory). Particles were stably dispersed in water at pH 8.5 and showed a good mobility in the porous medium under all experimental conditions: after injection of 5 pore volumes and flushing, the highest recovery was around 90%, the lowest around 30% (only for largest particles in fine sand). The particle size was by far the most impacting parameter, with increasing mobility with decreasing size, even if sand size and particle concentration were also relevant. The source of GONP showed a minor impact on the mobility. The transport test data were successfully modeled using the advection-dispersion-deposition equations typically applied for spherical colloids. Experimental and modeling results suggested that GONP, under the explored conditions, are retained due to both blocking and straining, the latter being relevant only for large particles and/or fine sand. The findings of this study play a key role in the development of an in-situ groundwater remediation technology based on the injection of GONP for contaminant degradation or sorption. Despite their peculiar shape, GONP behavior in porous media is comparable with spherical colloids, which have been more studied by far. In particular, the possibility of modeling GONP transport using existing models ensures that they can be applied also for the design of field-scale injections of GONP, similarly to other particles already used in nanoremediation.

9.
ACS Omega ; 4(4): 6826-6847, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459801

RESUMO

While polymer-based membranes and the consistent plants and elements have long been considered and optimized, there are only few studies on optimization of the new generation of carbon-based porous membranes for water desalination. By modeling the elements and their corresponding parameters in a vertical configuration via COMSOL Multiphysics software, an experimental setup was modified that contained various bare and carbon nanotube (CNT)-covered microprocessed porous membranes in parallel and in series. Several design parameters such as inlet pressure, length of outlet, vertical distance of the parallel membranes, and horizontal distances of the series membranes were optimized. Taking advantage of the uttermost surface area of CNTs and the engineered particle trajectory, almost 90% NaCl rejection and 97% Allura red rejection were obtained with very high permeation values. Considering microsized outlets, the results of particle rejections are outstanding owing to the smart design of the setup. The results of this work can be extended to larger and smaller scales up to the point where the governing equations still hold.

10.
Sci Total Environ ; 676: 792-810, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059895

RESUMO

Assessing environmentally sustainable GW management (ESGM) needs a deep knowledge of the present and the projected status of GW (GW) quantity and quality. Translations of these data into policy relevant information are usually done through quantitative indices. Despite the availability of a dozen GW sustainability indicators, defining an integrated index based on internationally accepted scientific standards indicators is required. To fill this gap, an in-depth review on the developed indicators/index for evaluation of GW sustainable management (GWSM) from an environmental viewpoint at aquifer scales is provided in this study. Thirteen environmentally related quantitative indicators are adopted for assessment of GWSM, especially in arid regions, depending upon data availability, and relevance of indicators. An integrated ESGM index (ESGMI) is developed based on weighted aggregation of thirteen adopted indicators through multi criteria decision making (MCDM) methods. ESGMI value ranged between 0 and 100, zero value denotes to the worst state or unsustainable GW management (GWM) and 100 indicates the ideal state or GWM is sustainable. Thirty important aquifers across Iran are chosen to implement the ESGMI at the national scale of a country known to be the fifth largest global GW user. ESGMI values for thirty of Iran's aquifers are obtained in the range 15.40 to 68.50 (on average, 49.96). This reveals the unsustainable status of GWM in this country. The results of this study demonstrate that the ESGMI is a promising tool to determine the current state of GW quantity and quality, reveals the effect of policy actions and plans, and contributes to the development and operation of effective sustainable management policies for GW resources. Due to uncertainties and spatio-temporal variabilities of key controlling variables in GW management, sustainability evaluation should be understood as a dynamic and iterative process, requiring persistent monitoring, analysis, prioritization, and modification.

11.
J Contam Hydrol ; 210: 50-64, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29519731

RESUMO

Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial [Formula: see text] =132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were [Formula: see text] , [Formula: see text] , and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic conductivity of aquifer and reactive materials within the wells, the mass of Fe0 in the NPRWs, and the orientation of NPRWs adopted. A trade-off between these factors should be considered to increase the efficiency of remediation using the NPRWs system.


Assuntos
Água Subterrânea/química , Ferro/química , Nanopartículas/química , Nitratos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Poços de Água , Tamanho da Partícula , Dióxido de Silício/química
12.
Ground Water ; 55(4): 558-564, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208223

RESUMO

In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south-west of Iran using 22-years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the recession and also surface recharge periods. Results indicate that both CR and DPR models are capable of simulating the ordinates of spring hydrographs which drainage less developed karstic aquifer. However, the goodness of fit criteria indicates outperformance of DPR model for simulation of total hydrograph ordinates. In addition, the DPR model is capable of quantifying hydraulic properties of two hydrologically connected overlapping continua conduits network and fissure matrix which lays important foundations for the mining operation and water resource management whereas homogeneous model representations of the karstic subsurface (e.g., the CR) do not work accurately in the karstic environment.


Assuntos
Água Subterrânea , Movimentos da Água , Irã (Geográfico) , Modelos Teóricos , Porosidade , Abastecimento de Água
13.
J Contam Hydrol ; 179: 182-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26142547

RESUMO

The work explores the efficacy of a biochemical remediation of a nitrate-contaminated aquifer by a combination of nanoscale zero-valent iron (NZVI) and bacteria supported by carbon substrates. Nitrate removal was first assessed in batch tests, and then in a laboratory bench-scale aquifer model (60cm length×40cm width×50cm height), in which a background flow was maintained. Water and natural sandy material of a stratified aquifer were used in the tests to enhance the reliability of the results. An array of non-pumping-reactive wells (NPRWs) filled with NZVI (d50=50nm, and SSA=22.5m(2)/g) mixed with carbon substrates (beech sawdust and maize cobs) was installed in the bench-scale aquifer model to intercept the flow and remove nitrate (NO3(-) conc.=105mg/l). The NPRW array was preferred to a continuous permeable reactive barrier (PRB) since wells can be drilled at greater depths compared to PRBs. The optimal well diameter, spacing among the NPRWs and number of wells in the bench-scale model were designed based on flow simulations using the semi-analytical particle tracking (advection) model, PMPATH. An optimal configuration of four wells, 35mm diameter, and capture width of 1.8 times the well diameter was obtained for a hydraulic conductivity contrast between reactive materials in the wells and aquifer media (KPM/Kaq=16.5). To avoid excessive proximity between wells, the system was designed so that the capture of the contaminated water was not complete, and several sequential arrays of wells were preferred. To simulate the performance of the array, the water that passed through the bench-scale NPRW system was re-circulated to the aquifer inlet, and a nitrate degradation below the limit target concentration (10mg/l) was obtained after 13days (corresponding to 13 arrays of wells in the field). The results of this study demonstrated that using the NZVI-mixed-carbon substrates in the NPRW system has a great potential for in-situ nitrate reduction in contaminated groundwater. This NPRW system can be considered a promising and viable technology in deep aquifers.


Assuntos
Carbono , Recuperação e Remediação Ambiental/métodos , Água Subterrânea , Ferro , Nitratos/análise , Purificação da Água/métodos , Água Subterrânea/química , Irã (Geográfico) , Modelos Teóricos , Nitratos/química , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluição da Água , Poços de Água
14.
Environ Monit Assess ; 186(6): 3685-99, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24493265

RESUMO

The aim of this study is to develop a fuzzy neural network-based support vector regression model (FNN-SVR) for mapping crisp-input and fuzzy-output variables. In this model, an artificial neural network (ANN) estimator based on multilayer perceptron (MLP) is considered as the kernel function of the SVR, whereas asymmetric triangular fuzzy H-level sets are assumed for model parameters including weight and biases of the ANN model. A genetic algorithm (GA) with real coding is implemented to optimize the model parameters during the training phase. To evaluate the efficiency and applicability of the proposed model, it is applied for simulating and regionalizing nitrate concentration in Karaj Aquifer in Iran. The goodness-of-fit criteria indicate a better performance of the FNN-SVR compared to some benchmark models such as geostatistic techniques as well as traditional SVR models with linear, quadratic, polynomial, and Gaussian kernel functions for modeling nitrate concentrations in groundwater.


Assuntos
Monitoramento Ambiental/métodos , Lógica Fuzzy , Água Subterrânea/química , Redes Neurais de Computação , Nitratos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Algoritmos , Irã (Geográfico)
15.
Water Res ; 47(1): 326-38, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23141767

RESUMO

The design of an efficient field-scale remediation based on the use of nanoscale zero valent iron (NZVI) requires an accurate assessment of the mobility of such particles in saturated porous media, both during injection in the subsurface (short-term mobility) and later (long-term mobility). In this study, the mobility of highly concentrated dispersions of bimetallic Fe/Cu nanoparticles (d(50) = 70 ± 5 nm) in sand-packed columns (0.5 m length and 0.025 m inner diameter) was studied. In particular, the influence of flow rate (V = 5 × 10(-4), 1 × 10(-3), 2 × 10(-3) m/s) and injected particle concentrations (2, 5, 8, 12 g/l) was addressed. Breakthrough curves and water pressure drop along the column, averaged effective porosity and final distribution of retained particles along the column were measured. Experimental results evidenced a good mobility of the Fe/Cu particles, with significant breakthrough in all explored experimental conditions of flow rate and C(0), without requiring the addition of any stabilizing agent. Clogging phenomenon of the column and also the pore pressure variation during injection period are strongly affected by injected concentration. Clogging due to deposition of particles following a ripening dynamics was observed in particular for C(0) = 8 and 12 g/l. The experimental data were modeled using the E-MNM1D software. The study has implications for field injection of bimetallic nanoparticles, suggesting that particular care is to be devoted when selecting injection concentration, to avoid porous medium clogging and control the radius of influence.


Assuntos
Cobre/química , Ferro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Purificação da Água/métodos , Modelos Teóricos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...